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Abstract. The magnetic ordering of the § = % Heisenberg antiferromagnet on a
rhombohedrally stacked trianpular lattice LiCrQ» is studied by susceptibility, neutron diffraction
and polarization analysis measurements nsing & single crystal. The ternperature dependence
of the susceptibility strongly suggests thar a 120° structure is established in each quasi-two-
dimengsional layer, which is parallel to the ¢ plane. Assuming the 120° streture in which
magnetic moments are confined in a plane including the ¢ axis because of an Ising-type
anisgtropy, neutron scattering shows that the magnenc ordering is 4 double-( structure with
non-equivalent wave numbers g = (% %0) and (—--u—) It is characterized by an alternating
sequence of rotational direction of the 120° strucmre a.long the ¢ axis.

1. Introduction

Antiferromagnets on a purely two-dimensional (2D) triangular laitice have been shown to
have interesting magnetic properties [1-4]. For classical (§ = c0) XY or Heisenberg
spins, the ground-state magnetic ordering is the non-collinear 120° structure, in which
three sublattice spins rotate 120° from one another. Because of this 120° structure, phase
transitions in the 2D triangular lattice show interesting behaviour [2,3]). If this triangular
lattice is stacked rhombohedrally, ABCABC stacking, and a weak interiayer exchange
coupling is introduced, the three-dimensional magnetic structure becomes a complicated
problem. If the 120° structure is preserved in the layer, each molecular field from first-
and second-neighbouring layers is cancelled out. Consequently the magnetic ordering is
governed by subtle balances and small perturbations.

The problem of the quasi-2D rhombohedral antiferromagnet was studied by Rastelli and
Tassi [5] for nearest-neighbour intralayer (J) and interlayer (/') exchange couplings (see
only Cr sites of figure 1) They showed that the classical ground state 1s the smgle ( helical
ordering

SR aeqR+ * —:qR ) - (1)

where a is a complex poIarization vector @ = @' — ia” with real vectors a’ and @” which
are |a’ | = [a”| and @’ L a”. The wave number g has infinite degeneracy on a degeneration
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line
g= (%, %, ;) + (u/3 - u/\/i, uf3+ v/~/§, 0)
! e\ 37 2
u= %cos (Té') - = —%‘ st (%;) )

for small J'. A slightly incommensurate modulation (%, v = 0) in the ¢ plane produces
an interlayer molecular field and stabilizes the classical energy. The infinite degeneracy is
lifted by perturbations such as the quantum correction [S5], a magnetic field perpendicular
to the ¢ axis [5] and further-neighbour exchange interactions [6]. They stabilize a point on
the degeneration line (2) at either { =0 or { =1

The Heisenberg antiferromagnet on the quasi-2D rhombohedral lattice is realized in
some Cr compounds, ACrQ; (A = Li, Na, K) {7-11] of the z-NaFeO, structure, illustrated
in figure 1, and MCrO; (M = Cu, Ag) [12-14] of the delafossite structure. Magnetic
structures of CuCr0; [13] and AgCrO: [14] were studied by powder neutron diffraction.
Magnetic reflections of CuCrQ; are well described by the Q = (%%l =40,1,2,...) series,
which are consistent with the above scenario for small J'/J. The magnetic modulation of
AgCr0O, is @ = (0.327, 0.327, 0), which suggests a slight modulation of the three-sublattice
structure due to a larger interlayer coupling.

On the other hand, neutron diffraction on powder [8] and single-crystalline [9] samples
of LiCrQ; showed that there are non-equivalent two modulations @ = (%%I), I =0 and
1= % This implies either that magnetic ordering of LiCrO; consists of two domains with
I=0and % or that a multi-Q structure is established. The single-crystal neutron diffraction
{9] showed that there is 2D diffuse scattering as a scattering rod along ¢ = (%%;) around
T, and proved the 2D character, which was expected from the crystal structure illustrated
in figure 1. Because of this 2D character and the Heisenberg nature of Cr* spins, it is
expected that magnetic ordering in each triangular plane, parallel to the ¢ plane, is the
120° structure in which magnetic moments are confined either in the ¢ plane or in a plane
including the ¢ axis, which depends on the anisotropy. However the proposed magnetic
structore from the single-crystal study [9] is quite different from this expectation. It is
a superposition of the 120° structure in the ¢ plane and a magnetic ordering of the ¢
axis component. To resolve this discrepancy, we re-examined the magnetic ordering of
LiCrQ; using a newly prepared single crystal by means of neutron diffraction and magnetic
susceptibility measurement, which has not been reported for a single crystal. In addition to
the standard neutron diffraction technique, we utilized polarization analysis, by which one
can unambiguously distinguish between the 120° structures in the ¢ plane and in a plane
including the ¢ axis.

2. Experimental details

Single crystals of LiCrO; were grown by the LiO-PbO-B,0; flux method. A typical
starting composition of the solution was 0.065 mol of Li»CO3, 0.014 mol of PbQ, 0.034 mol
of B203 and 0.22 mol of Cr»0s. The reagents were mixed and packed into a 50 ml Pt
crucible and heated in an electric furnace to 1300°C for 24 hours in air. After soaking,
the furnace was cooled at a rate of 3°C h™! to 800°C, and then naturally cooled to room
temperature. The crystals were separated from the solidified flux by leaching the crucible
in hot and dilute HNOj; for several hours. The obtained crystals were checked with single-
crystal x-ray diffraction and scanning electron microscope analyses. The specimen used in
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Figure 1. Crystal structure of LiCrO2 and 18 sublattices of magnetic structure. Cr sites form

a rhombohedral lattice. The 18 sublattices are represented by A,, B, and C.{n =0,1, ...

»3)

and are also shown by projection along the c axis. Thick solid and dashed fines represent
nearest-neighbour exchange interactions in the < plane, J, and between the ¢ planes, J'. ey isa
direction in the ¢ plane rotated by an angle o from the a ax:s, and is used to show model spin
structures drawn in figure 3,

this experiment was 11 mm® in volume.

Magnetic susceptibility was measured in 2 magnetic field of 2 T using a commercial
Quantum Design Co. SQUID magnetometer. Unpolarized neutron diffraction experiments
were performed on the ISSP-GPTAS triple-axis spectrometer installed at JRR-3M JAERI
(Tokai) with the double-axis configuration. A pyrolytic graphite (002) reflection was used
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for the monochromator. Higher-order neutrons were removed by the pyrolytic graphite
filter. The neutron energy was fixed at either 13.7 or 30.5 meV, and collimations 3(/-40'-
40 were employed. A polarization analysis experiment was carried cut on the ISSP- PONTA
spectrometer at JRR-3M using a Heusler polarizer. Neutrons of 13.7 meV and collimations
30'-80'-80'-8( were used. Higher-order neutrons were removed by the pyrolytic graphite
filter. The sample was mounted in a closed cycle “He gas refrigerator, so that the horizontal
scattering plane of the spectrometer coincided with the (R k1), (R 01) or (hk0) zone,

3. Experimental results

3.1. Magnetic susceptibility

The temperature dependence of the magnetic susceptibility is shown in figure 2. The
susceptibility is almost temperature independent, and shows no anisotropy above Ty
and a very small anisotropy xy. > xi. below Ty, No anisotropy and very weak
temperature dependence of the susceptibility are well known characteristics of the
Heisenberg antiferromagnet on the 2D triangular lattice. These were shown by a Mointe
Carlo simulation [3] and were observed in the real antiferromagnets VB, and VCl, [15].
Therefore the susceptibility data strongly suggest that LiCrO; is a good quasi-2D system.
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Figure 2. Temperature dependence of magnetic susceptibility, |

3.2. Unpolarized neutron diffraction

Crystal structure refinement of LiCrO, was performed by both the previous neutron powder
[8] and single-crystal [9] experiments. To confirm their results, we also performed it using
(h 0)-type reflections, and obtained the same result. It is summarized in table 1.
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Table 1. Observed and calcnlated squares of structure factors of LiCrQsz at T = 300 K (space
group, R3m; atomic positions, Cr (0, 0, 0), Li (0,0, %) and O (0,0, z) z = 0.2575(3)).

Rkl HFE. |FR,

003 62 46
006 80 8.0 .
009 0059  0.050 - .

107 71 78
104 12 16
101 3.1 22
102 106 8.7
105 0.3 0.7t
108 11 14

205 061 071
202 8.8 87
01 29 22
207 82 7.8

Magnetic reflections of LiCrO; were observed at (331) and (33D with I =
0,:4,1,432, 42, ... as reported in the previous work [9]. By scans along (3, 1,¢),
(¢,£,1) and (% + .E,% — £,0), we recognized that the magnetic Bragg scattering is
not- resolution limited along the ¢ axis. Typical scans through (310) are shown in
figare 3. The scan along the [110] direction is resolution limited, whereas the scan
along the ¢ axis clearly shows broadening. The profiles were fitted by a Gaussian
form §(AQ 1) expl—(A Qe /ky)*] convoluted with the instrumental resolution which was
measured using the nuclear Bragg scattering. The convoluted profiles are also plotted in
figure 3. The fitted parameter is ke = 0.023 r.Lu. = 0.0098 A~T. We notice that profiles of
other reflections with I = 2 L %, 2, ... can be fitted by this value. The correlation length
of the magnetic ordering along the ¢ axis is about 1/kj. = 100 A. We think that the finite
correlation length is brought about by certain randomness such as impurities and defects of
the lattice, which easily destroys weak interlayer coupling.

. As discussed in the introduction, a displacement of the magnetic reflection from the
cominenstrate (-:_‘;%0) on the ¢ plane may be observed. We checked this possibility in
the (740} zone, but did not detect any displacement. Experimental upper limits of the
displacement are |AQy| < 0.007 A" and |AQ,| < 0.005 A~! along the [110] and {1101
directions, respectively. If we apply equation (2), the ratio of the exchange constants is
WJE < 0.018.

The tempcraturc dependence of peak intensities of the magnetic reflections at (3 30)

{=0, 21,, 3,1 3» Is shown in figure 4. The peak intensities were measured by scans along
¢ 3 5;‘) Diffuse-scattering parts were subtracted from the data. As temperature is decreased,
they all appear from the Néel temperature Ty = 64 K and relative intensities are constant
within the experimental error. This can be interpreted as indicating that the magnetic
ordering is not a multidomain type with non-equivalent { = Q and % modulations but
a muli-@ structure including both the modulations. The feature that the intensity does
not saturate, even below Ty /2, reflects the finite correlation length of the magnetic Bragg
scattering,

Neutron scattering intensities of magnetic reflections were measured by -26 scans and
scans along the ¢ direction at T = 10 K. The absolute intensity was obtained by fitting

the scattering profiles to the Ganssian form convoluted with the instrumental resolution as
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Figure 3. Scans through the (}10) magnetic reflection along (¢) [110] and (5) [001]
directions. Dashed and solid lines are fits to the resolution and the Gaussian function
S(AQ ) exp[—(A Qu,,-/x"c)z} convoluted with the resolution, respectively.
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Figure 4. Temperature dependence of intensity of magnetic reflections at (3 11),/ =0, 1,3 and
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5-

shown in figure 3. It was corrected for the absorption. The intensity is written as

1o (250 1B @PLi | |
Fu@= Y  Sad?¥®  Fu@ =Fu@ -QQ- Fu@Q). @)

magnetic oait cell
where g and f(Q} are the g factor and form factor of cet respectively, and [],, stands for
an average over multidomains. The intensity was divided by the square of the form factor
F(Q) approximated by caleulation [16], and is listed as [Fu[%, = (g/2*[| B (Q)Plw in
table 2. .

3.3. Polarized neutron diffraction

In order to directly measure components of Fiy; (@), we carried out the polarization analysis.
Spin flip and non-flip scattering of magnetic reflections were measured at T = 10 K. They
are given by :

Ly=Iyoclle P @Phy Iy =Iy XIBu@P-le- Ru@Pl @

where I, for example, stands for the intensity of down-spin neutrons scattered from the
up-spin state, and e is a unit vector along the neutron spin, which is parallel to the guide
field. Terms coming from e~ [Fy;, (@) x Fiy1 (Q)] are neglected, because they vanish after
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Table 2. Observed and calculated squares of magnetic struciure factors of LiCr0; 2t T = 10 K.
Calculated values are for the model structures shown in figure 5(a), (b) and ().

| FralZye
[FalZq (a) &) (e)

0410004 022 033 039
034003 008 033 033
0320.03 014 031 030
0370.04) 012 035 035
0.075(0.007) 0.133 0079 0076
0.086(0.009) 0076 0077 0078
034(003) 017 032 032
036(0.04) 007 037 037
0400004 012 039 039
023002 009 023 023
0.083(0.008) 0.21 008 0.086
0.038(0.004) 0070 0035 003
027003) 014 028 028
0250.03) 007 030 031
040(0.04) 022 039 039
027(0:03) 008 026 026
0.16(0:02) 014 017 016
038000 013 038 038
030(003) 014 031 030
036(0.04) 020 036 036

=
had
=

G LIRS LRI Gt Gafpd L] G Lt L)]rs Lt U s 3 Lt L]t Lt Lt ] 03] e 3 s

L3 LA LD B LR LA ol Gl b Lt Lo 3]s G L Tab{ome G (0] o] 2] e S

W ke e O g O = W e ek U B i = e O
=

taking the average on domains corresponding to the inversion symmetry. The polarization
analysis measurement was carried out in the (hhl) zone with a vertical guide field along
the [110] direction. The results were corrected for the instrumental depolarization, and are
listed as ITT/(ITT -+ LN) in table 3.

A few data of the polarization analysis provide an important qualitative conclusion. If
the wave number @ is nearly perpendicular to the ¢ axis, such as @ = (311) and (33/) with
I=0and %, Ii4 and Iy, detect ordering in the ¢ plane and along the ¢ axis, respectively.
From table 3, one sees that both J44 and Zyy for small ! are finite. Therefore we conclude
that the magnetic structure has components both along the ¢ axis and in the ¢ plane.

4. Analysis of magnetic structure

4.1. Requirement of magnetic structure

The indexes of magnetic reflections, (310), I = 0, +1, &1, +3, £2, ..., imply that the
magnetic unit cell contains 18 sublattice Cr sites, three sublattices in a layer and six layers,
which are illustrated in figure 1 by A,, B, and C, (n = 0, 1, 2, 3, 4, 5). Coordinates of the
18 sublattice sites, Ra,, Hs, and Rc, at Ay, B, and C; (8 = 0, 1, 2, 3, 4, 5) respectively,
are By, = (000), Ry, = (%%%), Ra, = (332), Ba, = (001), Ry, = (219, Ra, = (335),
Rg, = R +(100) and R, = R, + (200).

No magnetic reflection is observed at @ = (000) and (111),1 =0, £1, &1, +3, 42,....
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Table 3. Observed and calculated values of I44 /(I44 + f4y) of LiCrO; at T = 10 K. Calculated
values are for the model structures shown in figure 5(z2), (&) and (e).

Upe /(T + 133 ) ]cake
Upe/Upp +00dlobs @ @& (@

=
o
AN

$30  0.60(0.01) 030 061 063
11 009001 020 011 012
111 0.22(001) 021 021 021
112 042(001) 055 040 041
112 0840.02) 022 083 085
113 044002 022 - 045 048
333 074001) 064 074 075
311 0.09(0.01) 022 002 010
414 035003) _ 023 017 016 i
113 057005 074 061 062
220 0.61(002) T 050 061 063
£31  0.110003) 020 013 0I5
221 037(0.05) 021 039 040
123 038(0.03) 051 037 038
222 0240004 021 021 021

From this extinction mle, one can easily prove that the summation of the three sublattice
spins at A, B, and C, in each layer is zero,

Sa, + 8, + 8, =0 &),

where S, for example, stands for the sublattice spin at A,,. If this condition is satisfied,
the magnetic sttucture can alternatively be written by a 6-Q structure '

6 ) 6
Sy = Z(aj e f 4 aj e By = Z 2[a; cos(g; « R) + a;-' sin(g; - R)] ()]

i=i j=t

' 11 : 21 1 2
aQ= (5,5,0) g = (—5, '3‘,0) @ = ('57, —5,0)

J(LLDy L (211) (12
gs = 33332 ‘q5_ 513:2 gs = 3! _3':5

with complex polarization vectors @; = a) — ia]. Thus adjustable parameters for the
magnetic structure are 12 sublattice spin vectors Sa, and Sp . or equivalently 12 real
vectors @) and al. )

As discussed in section 3.3, the polarization analysis shows that the ordered spins have
both ¢ axis and ¢ plane components. As a result, the 120° structure in the ¢ plane and
ordering only along the ¢ axis are rejected as the magnetic structure, In the following,
several structure models consistent with this and the restriction (5) are fitted to data of
| Fml2y, and Ipy/(Is4 + Ipy) given in tables 2 and 3. It should be noted that we calculated
the average [1., of equations (3) and (4) by assuming that all multidomains can be derived
by operating space group transformations to a model structure.
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Figure 5. Magnetic stracture models. 18 arrows labelled by A,, By and C, (n = 0,1,...,5)

represent 18 sublattice spins Sp,, Ss, and Sc, respectively. Spins of model structures are

contained in a plane including the ¢ axis and a direction e in the ¢ plane shown in figure 1.

Structure parameters are values of the best-fit result. (a) Single-G 120° structure with ¢ = g

and ga. (&) Single-Q structure with linear polarization for ¢ = g1 and g4. (¢) General 120°

strocture. Rotational direction is denoted by -+ or —. (d) The best-fit structure of the +—+—+—

120° structure, () Double-© 120° structure.
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4.2. Single-Q I12(° structure

We consider the simplest 120° structure model described by the single-Q structure with
wave numbers g; with j = 1,2,...,0. They are written by

Sp= a; €4F 1 o¥ e 7R = 2[4/, cos(q; - R) + o] sin(g; - R)] .
ARAlA a; L a;

From the requirement of the polarization analysis, the 120° structure should be in a plane
including the ¢ axis. Since a transformation a; > e*a; with any real number x does not
change the intensities (3) and (4), we can impose a condition that ; is parallel to the ¢
axis without loss of generality.

Least-squares ﬁtting was performed with four parameters, spin lengths |a]l, [a}]| and
directions of af and aj, which determine the plane containing spins. One of the least-
squares solutlons is shown by the 18 sublattice structures in figure 5{(a). They are the
single-2 120° structures with g; and ¢4. The other domains are derived by the threefold
symmetry around the ¢ axis. Calculated values of structure factors and Iy /(Iys + 1;y) for
the least-squares solutions are listed in tables 2 and 3. From these values, we conclude that
the obgervation cannot be fitted by this model. In agreement with this, the minimum value
of x? = 3034, defined by x2 = Z[(obs. — cale.)/error]?, is far larger than x2 ~ 35 which
is required for good fitting by the x? test.

(7}

4.3. Single-Q structure with linear polarization

Secondly, we consider the single-Q structure with a linear polarization, equation (7) with
a; | a;. Because of the invariance of the intensities by the transformation a; — e qy,
we can choose a? = 0 without loss of generality. Least-squares fitting was performed with
six parameters, @) and @}. The solution is illustrated as the 18 sublattice structures in
figure 5(b) for g; and g4. Calculated values of structure factors and Ly /(Iys - Ipy) are
listed in tables 2 and 3. The minimum value of x* = 21.8 is sufficiently small and the
calculated values well reproduce the observation. However, we cannot accept this model
structure, because the maximum magnetic moment, 3.8ux, is too large for Cr*t which has
3up. It should be noted that fitting with non-collinear a} and a;.’ was also performed, but
the result did not essentially improve the collinear case.

44. General 120° structure

Thirdly, we consider general 120° structures in a plane including the ¢ axis. This is
illustrated in figure 5(c). The 120° structure in one layer has a discrete degree of freedom,
which is the rotational direction, clockwise (+) and anti-clockwise (—). The structures
are classified by a sequence of the rotational directions of the six layers. There are eight
independent classes: ++++++, +++++—, ++++—, +++—+—, ++—4++—,
+++-——++—-+-—+~-+—+—

Least-squares fitting was performed for the eight classes, each of which has seven fitting
parameters of the spin length and angles & and ¢p(n = 1,2,...,5). The minimum of x2
is listed in table 4. From these values, we conclude that only the + —+ — 4— structure is
acceptable and reproduces the observation. One of the best-fit spin configurations is shown
in figure 5(d). The value of magnetic moment is 2.7ug, which is quite reasonable for
the quasi-2D system. Thus we think that this model structure is the correct 120° structure
sought for LiCrQs,. )
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Table 4. Minimum vaiue of x2 for the general 120° structure in a plane including the ¢ axis

shown in figure 5{c).

Rotation -+ 4 F+tFb—  Fhbb—— bbb
x2 3036 1386 1606 580

Rotation ++—++— +4++——— F—db—— Lo
x2 2162 1311 - 867 30.6

To obtain the explicit mathematical form (6) of the fitted + — 4 — -++— structures, six
amplitudes |a;| were calculated for the least-squares solutions. All the solutions show that
only two amplitudes for {q;, gs), (gz, g¢)} or (g3, @4) are equal and appreciable, and that the
others are an order smaller. This strongly suggests that the solutions of the + — + — -
structure can be well expressed by double-{ structures.

4.5, Double-Q 120° structure

Finally, we check the possibility of the double-@ 120° structure. As will be shown in
the appendix, the + — + — +— 120° structures with certain restrictions can be expressed
by double-Q forms with wave numbers (g1, gs}, (@2, gs) or (g3, gs). This structure for
{q1, gs) is shown in figure 5(¢). The double-Q form requires that spins at Ag, By and C,4
are parallel, and that spins at A;, B3 and Cs are parallel. If the double-@ 120° structure is
assumed to be in a plane including the ¢ axis, there are four structure parameters, the spin
length, the angle B between S, and Sy, the angle y between Sy, and the ¢ axis and the
angle . As shown in the appendix, 8 and y cannot be determined independently; only
B = 2y can be fitted.

Least-squares fitting was performed with the three parameters, and two solutions were
obtained. Calculated structure factors and I4q /(Z44 + I1)) are given in tables 2 and 3. They
are in good agreement with the observed values, and x2 = 34 is acceptably small. One
fitted structure is shown in figure 5(¢), where y = —10° is assumed. Its fitted parameters
are magnetic moment 2.68 £0,13u5 and B — 2y = —105=0.5°, & = 158 &= 3°, The other
solution has the same magnetic moment and 8 — 2y, but a little different oo = 142 £ 3°.
Since the two values of & are not very different, one may interpret this as indicating that
the difference is not intrinsic and the true value is @ = 150°. By comparing figure 5(¢) and
(d), one sees that the two fitting results are essentially the same. Therefore we conclude
that, if the 120° structure in a plane including the ¢ axis is assumed, neutron scattering
data show that the magnetic ordering is the donble-@ 120° structure characterized by the
+ — + — -+— rotational directions.

It should be noted that the fitting result of the double-@ 120° structure is also essentially
the same as that of the single-Q structure with linear polarization. This is understood by
the form of the complex polarization @; and as given by equation (A7). They are collinear
(g} | &}, j =1,5). If 2 transformation a; — e"#/2g, is made to the single-Q structure
(7) with gy, the resulting structure is nothing but the structure shown in figure 5(b) for q;.
Similarly a transformation a5 — — e*=#>2a4 and a 120° rotation are made to the single-Q
structure (7) with gs, one reaches the structure shown in figure 5(b) for ga.
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5. Discussion

As discussed in the introduction, Soubeyroux et al [9] measured magnetic structure factors
using a single crystal, and proposed a complicated magnetic structure. Their data cannot
be quantitatively compared with our data, because they did not explicitly define structure
factors. We think, however, that both sets of data are essentially the same and do not

depend on the sample, because they have the characteristic feature that (% %2) and (%%—%

are weak in the (-_l;-;-l) series reflections. It is because of this feature that not the single-Q
120° structure but the single-Q structure with linear polarization reproduces the structure
factors, Thus the point of the present work is that we have noticed that a summation of two
single- @ structures with the linear polarizations can be the 4+ — + — +— 120° structure in
a plane including the ¢ axis.

From the (3d)® electronic configuration of Cr*, the anisotropy energy is expected
to be the single-ion type D(§%)2. The 120° structure in a plane including the ¢ axis
indicates negative D, the Ising-like anisotropy. 120° structures in planes including the ¢
axis are observed in other Heisenberg antiferromagnets on stacked trianguiar lattices, such
as VCI, [17], CsNiCl; [18] and RbNiCl; [19], in which the stacking is the AAA. .. type
and the spin arrangement along the ¢ axis is the simple antiparallel sequence. In all
these antiferromagnets, successive phase transitions of ordering of the ¢ axis and ¢ plane
components commonly occur [17-19]. The successive phase transitions can be observed as
the temperature dependence of intensity ratios of [ (%%I = large) to I (%% = small}. No
such behaviour, however, was observed in the temperature dependence of the intensities of
the magnetic reflections shown in figure 4 even at T = Ty — 0.5 K. This can be interpreted
in two ways. (1) The anisotropy parameter D is very small and the split of Tjy is much
smaller than 0.5 K. (2) The main anisotropy is not the single-ion-type anisotropy. There
is a certain anisotropic interaction which stabilizes the double-Q 120° structure. 1t brings
about just one phase transition.

We would like to make a few comments on the mechanism by which the double-G
120° strucmare is stabilized, which remains to be studied. The double @, for example
¢ and g5, are not equivalent in reciprocal space, and thus J{(gq|) # J{gs), where
J{g) = L;J;; exp(ig- R;;). As discussed in the introduction J(g) takes the minimum value
on the degeneration line (2}, if only the nearest-neighbour intralayer (J) and interlayer
(J') exchange couplings exist. Althongh the degeneracy is lifted by perturbations for the
real system, the appearance of the double-Q structure means that the degeneracy is very
weakly broken and the difference between J{g;) and J(gs) is very small. This agrees with
the observation of the 2D diffuse scattering [9], which we also confirmed. In fact, a scan
along (}4¢) shows no three-dimensional modulation even at Ty + 0.5 K. In addition to
the degeneration line, there should exist an interaction which favours the double-Q 120°
structure. As shown in figure 5(e), the structure is characterized by the + — + — +—
rotational directions. One may think that the rotational direction is expressed by S; x Sj,
and hence the Dzyaloshinsky—-Moriya interaction may stabilize the structure. However the
Dzyaloshinsky—Moriya interaction is prohibited by the space group R3m of the a-NaFeO,
structure. We checked small deformation of the structure by x-ray powder diffraction at
room temperature, but no superlattice peak was detected.

6. Conclusion

Magnetic ordering in the quasi-two-dimensional antiferromagnet on the stacked triangular
lattice LiCrQO, has been studied by means of susceptibility, neutron diffraction and
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polarization analysis measurements. The rhombohedral stacking complicates the three-
dimensional magnetic configuration. The polarization analysis and the temperature
dependence of the magnetic reflection prove that both the ¢ axis and ¢ plane components
establish long-range order at a single phase transition temperature Ty. The temperature
dependence of the susceptibility strongly suggests that a 120° structure is established in
each layer. If the 120° structure in a plane including the ¢ axis is assumed in each layer,
neutron data show that magnetic ordering is the double-Q 120° stmucture with wave numbers
g = (330) and (—211), which is shown in figure 5(e). It is characterized by an alternating
sequence along the ¢ axis of the rotational direction of the 120° structure, Interactions
which stabilize the double-Q 120° structure remain to be clarified.
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Appendix A.

We will show that the double-Q structure really represents the coplanar 4 — + — +— 120°
structure. We start from the general 6-Q structure (6), and modify it to a more convenient
form for the six layers at z =0, 1,..., 4. The positional vectors are written as

[ Fy z=0
d+ Ry =3
R |2+ Ro z=% Al
(001) + Ry z=1
d+ (001) + Rp z=3
(2d+(001)+ Ry  z=3%

where d = (%%%) and Ry = (integer, integer, 0). For example, By = (0,0,0), (1,0,0)
and (2,0, 0) for A, B, and C,, respectively. Inserting (Al) into (6), we obtain

Sp=b,dwRo 4 prein-Ro z=n/3 n=0,1,...,5 (A2
with complex polarization vectors b, = b], —ib],

bp=a;+ay+az+as+as+as

by = pay + p*az + a3 + €3 (pay + p*as + ag)
by = p*a1 + pay + az + €77 (p*as + pas + ae)
by=a+az+az+ ei"(a4+a5+a5)

by = pas + p*a + a3 + P (pay + p*as + ag)
bs = p*ay + pay + az + €73 (p*a4 + pas + ag)

(A3)

where p = ¢2/3, Equation (A2) becomes the + — + — +— 120° structure, if b, satisfy
b, = by exp(ify), (n = 1,3,5), by = boexp(if,). n =2,4)

6ol = 1Bg by L bg. (A4)
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Equations (A3) and (Ad) becomes simple 1f double-Q structures are assumed. If only
|a;| and [as| are finite {A3) becomes

bo=a1+a5

= pla) — as) = pbs
) = p*(ar + as) = p*bo (45
by=a;—as

= p{a1 + as) = pby
= p*(@) — as) = p"bs.
The double—Q structure becomes the + — + — +— 120° structurc, if b, satisfy
by =biexp() [l =1Bfl by L @)

The resulting structure is shown in figure 5(e). The parameter £ is the angle between Sy,
and S,,. If the 120° structure is in a plane including the ¢ axis, by is written as

bo = |byi(e, — ieq) e

where e, and e, stand for unit vectors along the ¢ axis and in the ¢ plane, respectively,
and y is the angle between Sa, and the ¢ axis. The complex amplitudes a; and as are

expressed as
= |bj| P72 [ec cos (ﬁ —22}1) — g 8in (‘B _22y):l

o -2 -2
as = |by| e E2 [ecsin ('B 5 y)+eacos(ﬁ 5 y)]

From this equation one sees that not 8 and y independently but the combination g — 2y
can be determined by neutron scattering, because the phase factors of (A7) do not affect
intensities (3) and (4).

One can reach similar expressions to (A5) for the double-Q structures with (g2, gs) and
(g3, q4). This is a matter of course, because they can be derived by the threefold symmetry
around the ¢ axis. The other double-(? structures such as that with (g, g4) can easily be
shown not to express the + — 4+ — +— 120° structure. Therefore we conclude that only
three double-Q structures with (g1, gs), (&2, gs) and {gs, g4) can be the + — 4+ — +— 120°
structure.

(AT)
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